

results from the imperfect cancellation occurring at the junctions which is due to construction tolerances and discontinuity capacity.

GERALD F. ROSS²
Sperry Rand Research Center
Sudbury, Mass.

² The author was formerly with the Advanced Radar Studies Dept., Sperry Gyroscope Co., Great Neck, N. Y.

Broadbanding Microwave Diode Switches

In the design of microwave switching networks, it is often necessary to design for minimum VSWR and low loss over a broadband. One class of PIN diode TEM microwave switch may be successfully broadbanded by utilizing the band-pass filter designs published by Mumford [1] and Matthaei [2].

Consider the S.P.D.T. diode switch in Fig. 1 which uses two pairs of PIN diodes shunting a TEM stripline circuit. (Diodes must be paired in stripline circuits to obtain maximum forward bias attenuation.) If the diodes in "diode gate" D' are forward biased and the diodes in D are reverse biased, then most of the incident generator power will flow to G_L and vice versa. The canonical form of the Fig. 1 switch in either condition is a four "stub" band-pass filter consisting of $\lambda_0/4$ shunt stubs of characteristic admittance Y_m separated by quarter wave lengths of connecting line with characteristic admittance $Y_{m,m+1}$. For the condition where generator power flows to G_L , the first stub is Y_1 , the second is $Y_2 = Y_{23}$, the third "stub" (normally denoted by Y_3) is the parallel resonant circuit at D obtained by tuning out the diodes' reverse bias capacitance with the short inductive stub Y_α , and the fourth is Y_4 . The filter will exhibit maximally flat or Tschebyscheff band-pass response if certain prescribed values of characteristic admittance are assigned to Y_m and $Y_{m,m+1}$.

The problem arises as to what value of equivalent quarter wave stub characteristic admittance (Y_3) one must assign to the D and Y_α resonant circuit. This is properly called a "quasi-lumped" stub, since the inductive stub Y_α is loaded by the lumped capacitance of D . One method, found to give good practical results, is to equate the mid-band susceptance slope of the quasi-lumped stub to that of an actual $\lambda_0/4$ stub of characteristic admittance Y_3 . This may be done by considering Fig. 2, where

$$B = j\omega C - jY_\alpha \cot \frac{\omega d_\alpha}{V}$$

where

$$V = \frac{3 \times 10^8}{\sqrt{\epsilon_r}} \text{ meters/s}$$

$$\frac{dB}{d\omega} = j \left(C + Y_\alpha \frac{d_\alpha}{V} \csc^2 \frac{\omega d_\alpha}{V} \right).$$

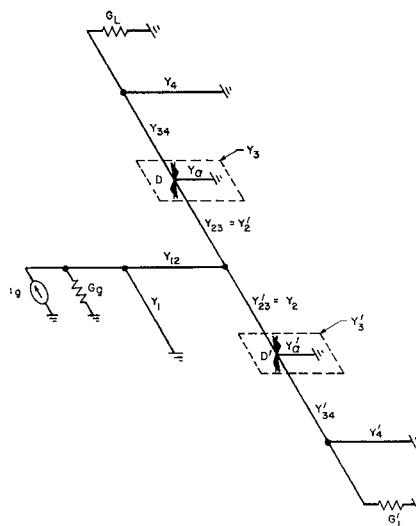


Fig. 1. Schematic diagram of stripline S.P.D.T. diode switch.

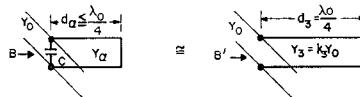


Fig. 2. Quasi-lumped stub and equivalent quarter-wave stub.

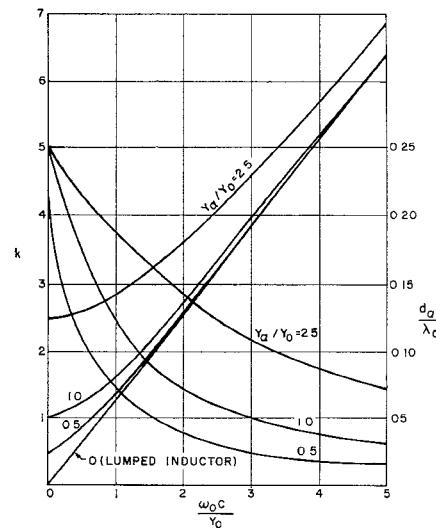


Fig. 3. Equivalent k of quasi-lumped stub (positive slope curves) and length d_α of quasi-lumped stub (negative slope curves), all vs. $\omega_0 C / Y_0$.

Also, for the quarter wave stub

$$B' = -jY_3 \cot \frac{\omega d_3}{V}$$

$$\frac{dB'}{d\omega} = iY_3 \frac{d_3}{V} \csc^2 \frac{\omega d_3}{V}.$$

Equating the two derivatives since we wish the selectivities to be equal near ω_0 .

$$C + Y_\alpha \frac{d_\alpha}{V} \csc^2 \frac{\omega d_\alpha}{V} = Y_3 \frac{d_3}{V} \csc^2 \frac{\omega d_3}{V};$$

let

$$\omega = \omega_0, \quad d_3 = \frac{\lambda_0}{4} \quad k_3 = \frac{Y_3}{Y_0};$$

then

$$\csc^2 \frac{\omega_0 d_3}{V} = 1$$

and

$$k_3 = \frac{4}{\pi} \frac{\omega_0 C}{2Y_0} + \frac{4}{\pi} \frac{\omega_0 d_\alpha}{2V} \frac{Y_\alpha}{Y_0} \csc^2 \frac{\omega_0 d_\alpha}{V};$$

also for $B=0$ at $\omega = \omega_0$

$$\omega_0 C = Y_\alpha \cot \frac{\omega_0 d_\alpha}{V}$$

whence

$$k_3 = \frac{2}{\pi Y_0} \left\{ \omega_0 C + Y_\alpha \left[\arccot \frac{\omega_0 C}{Y_\alpha} \right] \cdot \left[1 + \left(\frac{\omega_0 C}{Y_\alpha} \right)^2 \right] \right\}. \quad (1)$$

k_3 may be considered as the normalized characteristic admittance of the equivalent quarter wave stub Y_3 . Figure 3 plots k vs $\omega_0 C / Y_0$ for various values of Y_α , and may be used for designing a switch or any other bandpass structure with one or more quasi-lumped stubs.

One further constraint faces the designer of the Fig. 1 switch: for a symmetrical configuration (through this is not necessary) $Y_{23} = Y_{23}'$, and when Y_{23} is being used as a coupling line, Y_{23}' must serve as a shorted stub, and vice versa. Hence, the filter design equations must be examined to find if any cases exist where $Y_{23} = Y_{23}'$. In this respect Mumford's [1] equations for maximally flat filters are particularly useful since they have the constraint that $Y_{m,m+1} = Y_0$ for all cases. Therefore, the designer need only choose the case where $Y_{23} = Y_{23}' = Y_0$. Then, for the 4-stub filter $Y_3 = Y_0$ and $Y_1 = Y_4$. However, if the designer must use a diode capacitance C such that $Y_3 > Y_0$, then he should build a filter with an odd number of sections, and place D in the center since for maximally flat filters the center stub always has the highest characteristic admittance.

ACKNOWLEDGMENT

The author wishes to acknowledge the helpful guidance received from W. W. Mumford who first proposed this method of attack

R. E. FISHER
Bell Telephone Labs., Inc.
Murray Hill, N. J.

REFERENCES

- [1] W. W. Mumford, "An exact design technique for a type of maximally-flat quarter-wave coupled bandpass filter," 1963 IRE PTGMMT Intern'l Symp. Digest, pp. 57-61.
- [2] G. L. Matthaei, "Design of wide-band (and narrow-band) band-pass microwave filters on the insertion loss basis," IRE Trans. on Microwave Theory and Techniques, vol. MTT-8, pp. 580-593, November 1960.

Organic Superconductor and Dielectric Infrared Waveguide, Resonator, and Antenna Models of Insects' Sensory Organs

With reference to Little's recent paper [1], the following comments may be of value:

Nature may have long ago discovered the facts concerning the feasibility of organic